Prediction and classification of soluble solid contents to determine the maturity level of watermelon using visible and shortwave near infrared spectroscopy

Author:

Lazim Siti Saripa Rabiah,Mat Nawi Nazmi,Bejo Siti Khairunniza,Mohamed Shariff Abdul Rashid,Abdullah Najidah

Abstract

The present work investigated the potential application of a portable and low-cost spectroscopic technique to predict the soluble solid content (SSC) for determining the maturity level of watermelons. A total of 63 watermelon samples were used in the present work, representing three different maturity levels: unmatured, matured, and over-matured. Before spectral acquisition, each watermelon sample was cut into half, producing 126 fruit portions. Visible shortwave near infrared (VSNIR) spectrometer was used to record the spectral data from the skin surface of each portion. The SSC of each portion was measured using a digital refractometer. Partial least square (PLS) regression method was used to establish both calibration and prediction models to predict the SSC values from the watermelon samples. Support vector machine (SVM) classifier was used to categorise spectral data into the respective maturity levels. Results showed that the coefficient of determination (R2) values for calibration models of unmatured, matured, and over-matured were 0.65, 0.81, and 0.78, respectively. For the prediction model, the R2 values for unmatured, matured, and over-matured were 0.60, 0.74, and 0.76, respectively. The SVM yielded good classification accuracy of 85%. The present work demonstrated that the proposed spectroscopic method could be applied to predict and classify the maturity level of watermelons based on their skin condition.

Publisher

Universiti Putra Malaysia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3