Cellular Uptake of Catharanthus roseus-Silver Nanoparticles in Human Hepatocellular Carcinoma HepG2 Cells

Author:

Azhar Nur Asna,Abu Bakar Siti Aishah,Ngalim Siti Hawa,Ahmad Nor Hazwani

Abstract

Introduction: Nanoparticles exhibit unique features and currently at the forefront of cutting-edge research. Silver nanoparticles (AgNPs) are among the most promising and widely commercialised nanoproducts in various fields. The interaction of these AgNPs with cells remain unclear to connect with its toxicological endpoints. The aim of this study was to investigate the cellular uptake of C. roseus-AgNPs in hepatocellular carcinoma cells HepG2. Methods: The HepG2 cells were treated with the mean IC50 value of C. roseus-AgNPs which was 4.95±0.26 µg/mL for 24, 48 and 72 hours. The effects were compared with the untreated cells and other treatments which include camptothecin, C. roseus-aqueous extract, and AgNO3. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to quantify the intracellular Ag+ and Ca2+, while transmission electron microscopy (TEM) imaging was used to visualise the nanoparticle distribution. Results: The HepG2 cells have significantly taken up Ag+ from C. roseus-AgNPs with at least six times higher compared to Ag+ from AgNO3. The intracellular Ca2+ detected in HepG2 cells for all treatments were significantly higher than the untreated cells, in time-dependent manner. TEM images indicated the endocytosis of C. roseus-AgNPs with the presence of endosomes and exocytic vesicles. Conclusion: The significant accumulation of intracellular Ag+ demonstrated the efficiency of the C. roseus-AgNPs uptake while the increased Ca2+ indicated the early sign of cell injury. The cellular uptake was mainly through endocytosis. These findings are crucial to correlate the physicochemical properties of C. roseus-AgNPs with the anticancer mechanisms towards the development of liver cancer therapy.

Publisher

Universiti Putra Malaysia

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3