Prediction of mRNA Targets of miR-101-3p in Diabetic Kidney Disease by Bioinformatics Tools

Author:

Zahari Sham Siti Yazmin,Azwar Shamin,Wai Kien Yip,Ng Chin Tat,Abdullah Maha,Thevandran Kalaiselvam,Osman Malina,Heng Fong Seow

Abstract

Introduction: Diabetic kidney disease (DKD) remains the leading cause of chronic kidney disease (CKD) worldwide. Current biomarkers and treatment still fall short at preventing its progression. In search for a better diagnostic or therapeutic target, much interest in microRNAs, which act as post-translational regulators of gene expression has emerged. An upregulation of miR-101-3p was identified in the sera of type 2 diabetic patients with macroalbuminuria in a selected Malaysian population by profiler RT-PCR array. Using bioinformatics tools, this study aimed to predict the mRNA targets of miR-101-3p. Given the scarcity of bioinformatics studies in DKD, this study also attempted to fill the gap. Methods: The mRNA targets were identified from two experimentally validated databases, namely Tarbase and MirTarBase. The commonly identified mRNA targets were submitted to Metascape and Enrichr bioinformatic tools. Results: A total of 2630 and 342 mRNA targets of miR-101-3p were identified by Tarbase and miRTarbase, respectively. One-hundred ninety-seven (197) mRNA targets were submitted for functional enrichment analysis. Our bioinformatics and bibliographical analyses suggested that ras-related C3 botulinum toxin substrate 1 (RAC1) and Ras-associated protein-1 b (RAP1b) were the most promising putative mRNA targets of miR-101-3p. The most enriched Gene Ontology term and pathway associated with these putative mRNA targets included Ras protein signal transduction and focal adhesion, respectively. Based on these analyses, their molecular mechanisms were proposed. Conclusion: Given the structural heterogeneity of the kidneys and cell type-dependent miRNA modulation, an in-silico target prediction of miR-101-3p increases the probability of a successful future in-vitro experimental verification.

Publisher

Universiti Putra Malaysia

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3