The Effect of Porosity and Contact Angle on the Fluid Capillary Rise for Bone Scaffold Wettability and Absorption

Author:

Mohd Yusof Ab Aziz bin,Mohd Szali Januddi Mohd Al-Fatihhi,Md Isa Kamariah,Khalid Muhamad Faris Syafiq,Abdul Kadir Ros Atikah

Abstract

Introduction: Wettability and fluid absorption are two important bone scaffold characteristics that determine proper cell attachment and flow of nutrition and oxygen. To imitate the human bone structure, the current study was carried to investigate the effect of the porosity of bone scaffold and contact angle of the fluid by evaluating the height of capillary rise. Methods: The structure was simplified based on the circle and square pattern and evaluated using Computational Fluid Dynamic (CFD). Porosity and contact angle were varied from 50% to 80%, while the contact angle ranged from 0 degrees to 60 degrees. The result was evaluated further using statistical analysis. Results: The CFD result was in agreement with Jurin’s law (9% error). The height of capillary rise was found to be excellent for the square pattern, while the circle was found to work across all the investigated parameters better. The porosity was correlated with the height of capillary rise (r = -0.549). The strongest correlation happened to contact angle (r =-0.781). Conclusion: The study concludes that water absorption and wettability can be altered and improved based on porosity. Meanwhile, the height of capillary rise depends strongly on the contact angle.

Publisher

Universiti Putra Malaysia

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3