Author:
Nasidi Ida Norfaslia,Ismail Lokman Hakim,Samsudin Emedya Murniwaty
Abstract
Natural fibre has been conventionally and widely utilised as a sound absorber in order to replace the traditional synthetic absorber materials. In this study, coir fibre (CF) was prepared as an acoustic absorber and subjected to an additional surface treatment by using sodium hydroxide (NaOH) at various concentrations ranging from 1% to 8%. This was geared towards analysing the effect of alkalisation on the fibre morphology, diameter, and changes occurring in the CF functional groups, thus resulting in enhanced sound absorption properties. To this end, the fibre surface was analysed using a scanning electron microscopy (SEM) to study the surface morphology of treated and untreated CF materials, whereas the implementation of Fourier-transform infrared (FTIR) allowed an analysis of CF characterisation. The absorber sample was fabricated at a constant thickness of 45mm and a density of 0.4g/cm3 density prior to testing for the sound absorption coefficient (SAC) by using an impedance tube. The morphology of CF revealed the treated fibres to be free of impurities including lignin and hemicellulose layer, which were removed from their surface. This finding was supported by the peak changes observed on the FTIR spectra. Furthermore, the fibre diameter was reduced as the concentrations of NaOH increased. The results conclusively indicated that treated CF at the concentrations of 7% and 8% NaOH gained the highest SAC values across the low and high-frequency ranges, yielding an α coefficient average of 0.9 and above.
Publisher
Universiti Putra Malaysia
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献