Effect of Sodium Hydroxide (NaOH) Treatment on Coconut Coir Fibre and its Effectiveness on Enhancing Sound Absorption Properties

Author:

Nasidi Ida Norfaslia,Ismail Lokman Hakim,Samsudin Emedya Murniwaty

Abstract

Natural fibre has been conventionally and widely utilised as a sound absorber in order to replace the traditional synthetic absorber materials. In this study, coir fibre (CF) was prepared as an acoustic absorber and subjected to an additional surface treatment by using sodium hydroxide (NaOH) at various concentrations ranging from 1% to 8%. This was geared towards analysing the effect of alkalisation on the fibre morphology, diameter, and changes occurring in the CF functional groups, thus resulting in enhanced sound absorption properties. To this end, the fibre surface was analysed using a scanning electron microscopy (SEM) to study the surface morphology of treated and untreated CF materials, whereas the implementation of Fourier-transform infrared (FTIR) allowed an analysis of CF characterisation. The absorber sample was fabricated at a constant thickness of 45mm and a density of 0.4g/cm3 density prior to testing for the sound absorption coefficient (SAC) by using an impedance tube. The morphology of CF revealed the treated fibres to be free of impurities including lignin and hemicellulose layer, which were removed from their surface. This finding was supported by the peak changes observed on the FTIR spectra. Furthermore, the fibre diameter was reduced as the concentrations of NaOH increased. The results conclusively indicated that treated CF at the concentrations of 7% and 8% NaOH gained the highest SAC values across the low and high-frequency ranges, yielding an α coefficient average of 0.9 and above.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3