Optimisation of Free Fatty Acid Removal in Nyamplung Seed Oil (Callophyllum inophylum L.) using Response Surface Methodology Analysis

Author:

Kusumaningtyas Ratna Dewi,Prasetiawan Haniif,Artanti Putri Radenrara Dewi,Triwibowo Bayu,Kurnita Siti Choirunisa Furi,Anggraeni Nanda Dwi,Veny Harumi,Hamzah Fazlena,Muhd Rodhi Miradatul Najwa

Abstract

Nyamplung seed (Calophyllum inophyllum L.) oil is a prospective non-edible vegetable oil as biodiesel feedstock. However, it cannot be directly used in the alkaline catalysed transesterification reaction since it contains high free fatty acid (FFA) of 19.17%. The FFA content above 2% will cause saponification reaction, reducing the biodiesel yield. In this work, FFA removal was performed using sulfuric acid catalysed esterification to meet the maximum FFA amount of 2%. Experimental work and response surface methodology (RSM) analysis were conducted. The reaction was conducted at the fixed molar ratio of nyamplung seed oil and methanol of 1:30 and the reaction times of 120 minutes. The catalyst concentration and the reaction temperature were varied. The highest reaction conversion was 78.18%, and the FFA concentration was decreased to 4.01% at the temperature of 60℃ and reaction time of 120 minutes. The polynomial model analysis on RSM demonstrated that the quadratic model was the most suitable FFA conversion optimisation. The RSM analysis exhibited the optimum FFA conversion of 78.27% and the FFA content of 4%, attained at the reaction temperature, catalyst concentration, and reaction time of 59.09℃, 1.98% g/g nyamplung seed oil, and 119.95 minutes, respectively. Extrapolation using RSM predicted that the targeted FFA content of 2% could be obtained at the temperature, catalyst concentration, and reaction time of 58.97℃, 3%, and 194.9 minutes, respectively, with a fixed molar ratio of oil to methanol of 1:30. The results disclosed that RSM is an appropriate statistical method for optimising the process variable in the esterification reaction to obtain the targeted value of FFA.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference38 articles.

1. Aboelazayem, O., Gadalla, M., & Saha, B. (2018). Biodiesel production from waste cooking oil via supercritical methanol: Optimisation and reactor simulation. Renewable Energy, 124, 144-154. https://doi.org/10.1016/j.renene.2017.06.076

2. Ahmad, A., Rehman, M. U., Wali, A. F., El-Serehy, H. A., Al-Misned, F. A., Maodaa, S. N., Aljawdah, H. M., Mir, T. M., & Ahmad, P. (2020). Box–Behnken response surface design of polysaccharide extraction from Rhododendron arboreum and the evaluation of its antioxidant potential. Molecules, 25(17), Article 3835. https://doi.org/10.3390/molecules25173835

3. Amdoun, R., Khelifi, L., Khelifi-Slaoui, M., Amroune, S., Asch, M., Assaf-ducrocq, C., & Gontier, E. (2018). The desirability optimization methodology: A tool to predict two antagonist responses in biotechnological systems: Case of biomass growth and hyoscyamine content in elicited datura starmonium hairy roots. Iranian Journal of Biotechnology, 16(1), 11-19. https://doi.org/10.21859/ijb.1339

4. Aparamarta, H. W., Gunawan, S., Husin, H., Azhar, B., & Aditya, H. T. (2020). The effect of high oleic and linoleic fatty acid composition for quality and economical of biodiesel from crude Calophyllum inophyllum oil (CCIO) with microwave-assisted extraction (MAE), batchwise solvent extraction (BSE), and combination of MAE-BSE meth. Energy Reports, 6, 3240-3248. https://doi.org/10.1016/j.egyr.2020.11.197

5. Arora, R., Toor, A. P., & Wanchoo, R. K. (2015). Esterification of high free fatty acid rice bran oil: Parametric and kinetic study. Chemical and Biochemical Engineering Quarterly, 29(4), 617-623. https://doi.org/10.15255/CABEQ.2014.2117

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3