Author:
Arisanty Deasy,Saputra Aswin Nur,Rahman Akhmad Munaya,Hastuti Karunia Puji,Rosadi Dedi
Abstract
Wetland areas are volatile and have high iron content. In this study, through a remote sensing approach, especially using Landsat Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) imagery, we discussed the method to estimate the presence of iron oxide in the wetlands of South Kalimantan in 2018, 2019, and 2020. Interpretation of the Landsat OLI TIRS was employed in April 2018, August 2018, February 2019, August 2019, March 2020, and August 2020. The band ratio method was used to determine the distribution of samples in this study. The results of the iron oxide index from the image were performed regression and correlation analysis with field measurement and laboratory test results to validate the oxide index values. The results showed that the iron oxide index value in the dry season was higher than in the rainy season. Iron oxide index value in open land was higher than in vegetation cover. The wetland was in dry condition during the dry season, making it easier to detect iron oxide values. Vegetation cover could reduce the iron oxide index value on the soil surface so that the iron oxide value was more easily identified in open land. The results of linear regression testing for the wet season sample obtained a coefficient of determination R² = 0.413, while the results of linear regression testing for the dry season sample obtained a coefficient of determination R² = 0.667. Thus, the Landsat image has strong enough to estimate the iron oxide index in the wetland area of Kalimantan.
Publisher
Universiti Putra Malaysia
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference35 articles.
1. Aisabokhae, J. E., & Oresajo, S. B. (2018). Supervised classification of Landsat-8 band ratio images for geological interpretation of Sokoto, Nigeria. South African Journal of Geomatics, 7(3), 360-371.
2. Arisanty, D. (2017). The influence of tide on suspended sediment transport in barito delta, Southern Kalimantan, Indonesia. Ecology, Environment and Conservation, 23(2), 696-703.
3. Arisanty, D., Adyatma, S., Muhaimin, M., & Nursaputra, A. (2019). Landsat 8 OLI TIRS imagery ability for monitoring post forest fire changes. Pertanika Journal of Science & Technology, 27(3), 1105-1120.
4. Arisanty, D., Jędrasiak, K., Rajiani, I., & Grabara, J. (2020). The destructive impact of burned peatlands to physical and chemical properties of soil. Acta Montanistica Slovaca, 25(2), 213-223. https://doi.org/10.46544/AMS.v25i2.8
5. Cardoso, G. F., Souza, C., & Souza-Filho, P. W. M. (2014). Using spectral analysis of Landsat-5 TM images to map coastal wetlands in the Amazon River mouth, Brazil. Wetlands Ecology and Management, 22(1), 79-92. https://doi.org/10.1007/s11273-013-9324-4
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献