Author:
Ramashini Murugaiya,Abas Pg Emeroylariffion,De Silva Liyanage C
Abstract
Bird classification using audio data can be beneficial in assisting ornithologists, bird watchers and environmentalists. However, due to the complex environment in the jungles, it is difficult to identify birds by visual inspection. Hence, identification via acoustical means may be a better option in such an environment. This study aims to classify endemic Bornean birds using their sounds. Thirty-five (35) acoustic features have been extracted from the pre-recorded soundtracks of birds. In this paper, a novel approach for selecting an optimum number of features using Linear Discriminant Analysis (LDA) has been proposed to give better classification accuracy. It is found that using a Nearest Centroid (NC) technique with LDA produces the optimum classification results of bird sounds at 96.7% accuracy with reduced computational power. The low computational complexity is an added advantage for handheld portable devices with minimal computing power, which can be used in birdwatching expeditions. Comparison results have been provided with and without LDA using NC and Artificial Neural Network (ANN) classifiers. It has been demonstrated that both classifiers with LDA outperform those without LDA. Maximum accuracies for both NC and ANN with LDA, with NC and the ANN classifiers requiring 7 and 10 LDAs to achieve the optimum accuracy, respectively, are 96.7%. However, ANN classifier with LDA is more computationally complex. Hence, this is significant as the simpler NC classifier with LDA, which does not require expensive processing power, may be used on the portable and affordable device for bird classification purposes.
Publisher
Universiti Putra Malaysia
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference33 articles.
1. Alvarsson, J. J., Wiens, S., & Nilsson, M. E. (2010). Stress recovery during exposure to nature sound and environmental noise. International Journal of Environmental Research and Public Health, 7(3), 1036-1046. https://doi.org/10.3390/ijerph7031036
2. Anderson, S. E., Dave, A. S., & Margoliash, D. (1996). Template‐based automatic recognition of birdsong syllables from continuous recordings. The Journal of the Acoustical Society of America, 100(2), 1209-1219. https://doi.org/10.1121/1.415968
3. Badi, A., Ko, K., & Ko, H. (2019). Bird sounds classification by combining PNCC and robust Mel-log filter bank features. Journal of the Acoustical Society of Korea, 38(1), 39-46. https://doi.org/10.7776/ASK.2019.38.1.039
4. Butler, R. W. (2019). Niche tourism (birdwatching) and its impacts on the well-being of a remote island and its residents. International Journal of Tourism Anthropology, 7(1), 5-20. https://doi.org/10.1504/ijta.2019.10019435
5. Chou, C. H., Liu, P. H., & Cai, B. (2008). On the studies of syllable segmentation and improving MFCCs for automatic birdsong recognition. In Proceedings of the 3rd IEEE Asia-Pacific Services Computing Conference, APSCC 2008 (pp. 745-750). IEEE Publishing. https://doi.org/10.1109/APSCC.2008.6
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献