Author:
Damayanti Retno,Rachma Nurul,Al Riza Dimas Firmanda,Hendrawan Yusuf
Abstract
African leaves (Vernonia amygdalina Del.) is a nutrient-rich plant that has been widely used as a herbal plant. African leaves contain chlorophyll which identify compounds produced by a plant, such as flavonoids and phenols. Chlorophyll testing can be carried out non-destructively by using the SPAD 502 chlorophyll meter. However, it is quite expensive, so that another non-destructive method is developed, namely digital image analysis. Relationships between chlorophyll content and leaf image colour indices in the RGB, HSV, HSL, and Lab* space are examined. The objectives of this study are 1) to analyse the relationship between texture parameters of red, green, blue, grey, hue, saturation(HSL), lightness (HSL), saturation( HSV), value(HSV), L*, a*, and b* against the chlorophyll content in African leaves using a flatbed scanner (HP DeskJet 2130 Series); and 2) built a model to predict chlorophyll content in African leaves using optimised ANN through a feature selection process by using several filter methods. The best ANN topologies are 10-30-40-1 (10 input nodes, 40 nodes in hidden layer 1, 30 nodes in hidden layer 2, and 1 output node) with a trainlm on the learning function, tansig on the hidden layer, and purelin on the output layer. The selected topology produces MSE training of 0.0007 with R training 0.9981 and the lowest validation MSE of 0.012 with R validation of 0.967. With these results, it can be concluded that the ANN model can be potentially used as a model for predicting chlorophyll content in African leaves.
Publisher
Universiti Putra Malaysia
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference45 articles.
1. Abdulkadir, A. R., Sarwar, M. J., & Dhiya, D. Z. (2015). Effect of chlorophyll cotent and maturity on total phenolic, total flavonoid contents and antioxidant activity of Moringa oleifera Leaf (Miracle Tree). Journal of Chemical and Pharmaceutical Research, 7(5), 1147-1152.
2. Armi, L., & Shervan, F. E. (2019). Texture image analysis and texture classification methods - A review. International Online Journal of Image Processing and Pattern Recognition, 2(1), 1-29.
3. Barman, U., & Choudury, R. D., (In Press). Smartphone image based digital chlorophyll meter to estimate the value of citrus leaves chlorophyll using linear regression, LMBP-ANN and SCGBP-ANN. Journal of King Saud University – Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2020.01.005
4. Barman, U., Ridip, D. C., Arunav, S., Susmita, D., Bijon, K. D., Barna, P. M., & Golap, G. B. (2018). Estimation of chlorophyll using image processing. International Journal of Recent Scientific Research, 9(3), 24850-24853. https://doi.org/10.24327/IJRSR
5. Borhan, M. S., Panigrahi, S., Satter, M. A., & Gu, H. (2017). Evaluation of computer imaging technique for predicting the SPAD readings in potato leaves. Information Processing in Agriculture, 4(4), 275-282. https://doi.org/10.1016/j.inpa.2017.07.005
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献