The Effect of the Operation Time, Orientation of Passenger and Body Mass Index on Passengers’ Whole-Body Vibration on Urban Rail

Author:

Mohd Yunos Muhammad Nur Annuar,Md Jalil Mohd Azlis Sani,Azmir Nor Azali,Mazlan Mifzal Nazhan

Abstract

Urban rail is a widely used public transportation; the vibration from frequent rides may impact passengers. The rail vehicle’s vibrations can cause human fatigue and result in severe musculoskeletal problems to the passenger. This paper aims to identify the effects of passenger orientation, operation time and body mass index on passengers’ whole-body vibration on an urban rail in Malaysia. Real-time monitoring of the whole-body vibration was conducted using 23 full factorial designs of the experiment, which was analysed statistically using Minitab Software. The overall result of this study is that the passengers in a seated position had greater exposure to whole-body vibration, which is 0.3686 ms-2 than standing passengers, 0.2965 ms-2. Also, passengers tend to be exposed to greater vibration during an off-peak time of 0.4063 ms-2, than a peak time of 0.3706 ms-2. Lastly, overweight passengers were exposed to greater vibration, of 0.4063 ms-2, than passengers within the ideal weight range of 0.4000 ms-2. This study has statistically proven that all the factors were significantly influenced the vibration exposure to the passenger. The most significant factor towards the vibration exposure is the “Body Mass Index (BMI)”, in which the p-value is less than 0.001. This study concludes that the whole-body vibration of a passenger is affected by the orientation of the passenger, operation time and body mass index of passengers on urban rail service.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference23 articles.

1. Azlis-Sani, J., Zaid, M. F., Yahya, M. N., Ismail, S. M. S. S. M., Ahmad Tajedi, N. A., Aziz, R. A., & Zein, R. M. (2015). Evaluation of whole body vibration and back pain problem among light rapid transit (LRT) Drivers. Applied Mechanics and Materials, 773-774, 845-849. https://doi.org/10.4028/www.scientific.net/amm.773-774.845

2. Dumitriu, M. (2013). Evaluation of the comfort index in railway vehicles depending on the vertical suspension features. Annals of Faculty Engineering Hunedoara, 11(4), 23-32.

3. Fateh, A., Hejazi, F., Ramanathan, R. A., & Jaffar, M. S. (2016). Seismic response of a light rail transit station equipped with braced viscous damper. Pertanika Journal of Science and Technology, 24(2), 273-283.

4. Gągorowski, A. (2010). Simulation study on stiffness of suspension seat in the aspect of the vibration assessment affecting a vehicle driver. Logistics and Transport, 11, 55-62.

5. Griffin, M. J., & Erdreich, J. (1991). Handbook of Human Vibration. The Journal of the Acoustical Society of America, 90 (4), Article 2213. https://doi.org/10.1121/1.401606

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3