A New Parametric Function-Based Dynamic Lane Changing Trajectory Planning and Simulation Model

Author:

Rahman Md. Mijanoor,Ismail Mohd. Tahir,Awang Norhashidah,Majahar Ali Majid Khan

Abstract

Lane-changing (LC) problem may cause serious accidents or create a painful traffic jam at multi-lane roads. Existing LC simulation model was created with some limitations (less fitted, without velocity and acceleration profiles, high curvature) by using well known trajectory curve such as Hyperbolic Tangent Curve (HTC), Sine-Based Curve (SC), Polynomial Curve (PC). In this study, a new parametric curve had been proposed by using curvilinear coordinate system and fitted against Next Generation Simulation (NGSIM) real dataset. Further, new profiles of velocity and acceleration were designed using the proposed LC trajectory curve. The curvature of proposed model was zero-based curvature both at LC starting and ending points. This proposed curvature was compared with two models such as HTC and SC. The average root-mean-square-error of proposed model decreased with 1.84% for left LC and 15.48% for right LC compared to HTC model and 1.74% for left LC and 15.60% for right LC compared to SC model. Similarly, the proposed model for velocity and acceleration profiles improved significantly from PC model. The proposed parametric curve solves the gap and collision points of LC vehicle with a front vehicle and rear vehicle at target lane and can be used in real LC path planning.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Objective evaluation index for the comprehensive performance of intelligent vehicle lane-changing trajectory;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2023-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3