Author:
Mohamed Rauda A.,Ong Keat Khim,Abdul Halim Norhana,Mohd Kasim Noor Azilah,Mohd Noor Siti Aminah,Knight Victor Feizal,Muhamad Rabbani,Wan Yunus Wan Md Zin
Abstract
The search for new compounds other than oxime as potential reactivator that is effective upon organophosphate poisoning treatments is desired. The less efficacy of oxime treatment has been the core factor. Fourteen compounds have been screened via in silico approach for their potential as sarin-inhibited human acetylcholinesterase poisoning antidotes. The selection of the compounds to be synthesized based on this computational screening, reduces the time and cost needed. To perform the docking study of sarin-inhibited acetylcholinesterase and reactivator-sarin inhibited acetylcholinesterase complexations, a bioinformatics tool was used. Estimation of the nucleophilic attack distance and binding energy of fourteen potential compounds with sarin inhibited acetylcholinesterase complexes to determine their antidote capacities was carried out using Autodock. A commercially available antidote, 2-PAM was used for the comparison. The best docked-pose was further examined with molecular dynamics simulation. Apart from being lipophilic, a compound with a carboxylic acid, (R)-Boc-nipecotic acid is shown to exhibit 6.29 kcal/mol binding energy with 8.778 Å distance of nucleophilic attack. The stability and flexibility of the sarin-inhibited acetylcholinesterase, complexed with (R)-Boc-nipecotic acid suggests this compound should be tested experimentally as a new, promising antidote for sarin-inhibited acetylcholinesterase poisoning.
Publisher
Universiti Putra Malaysia
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference51 articles.
1. Abou-Donia, M. B., Siracuse, B., Gupta, N., & Sokol, A. S. (2016). Sarin (GB, O isopropyl methylphosphonofluoridate) neurotoxicity: Critical review. Critical Reviews in Toxicology, 46(10), 845-875. https://doi.org/10.1080/10408444.2016.1220916
2. Ajami, D., & Rebek, J. (2013). Chemical approaches for detection and destruction of nerve agents. Organic and Biomolecular Chemistry, 11(24), 3936-3942. https://doi.org/10.1039/c3ob40324f
3. Artursson, E., Akfur, C., Hornberg, A., Worek, F., & Ekstrom, F. (2009). Reactivation of tabun-hAChE investigated by structurally analogous oximes and mutagenesis. Toxicology, 265(3), 108-114. https://doi.org/10.1016/j.tox.2009.09.002
4. Bagaria, A., Jaravine, V., Huang, Y. J., Montelione, G. T., & Guntert, P. (2012). Protein structure validation by generalized linear model root-mean-square deviation prediction. Protein Science, 21(2), 229-238. https://doi.org/10.1002/pro.2007
5. Baker, S. R. (1990). The effects of pesticides on human health. In C. F. Wilkinson (Ed.), Advances in modern environmental toxicology (pp. 35-130). Princeton Scientific Publication.