Author:
Abdulkarim Kabiru Haruna,Abd Ghafar Azmiah,Lai Lee Yoke,Said Ismail
Abstract
Frequent increases in temperature and related consequences have been the trending phenomenon for over ten decades, with a general rise of about 0.740C. This study evaluates the effects of different percentage covers of tree canopies for outdoor thermal improvement of campus areas in Bauchi, Nigeria. Firstly, the study involves on-site measurement of existing features on the site and the climatic conditions. Secondly, performing simulation for evaluation of the plant-surface-atmosphere interactions with Envi-met Version 4.4.2. The vegetation effects were evaluated for outdoor air temperature and mean radiant temperature (MRT) reduction. It is found that the maximum air temperature reduction of 3.380C and 24.240C of MRT were achieved with up to 45% tree canopy coverage. The mean air temperature and MRT reduction of 0.630C and 4.800C were respectively achieved with the same percentage coverage of the canopies. However, it was found that the thermal reduction effects of vegetation do not apply to every hour of the day. In essence, proper planning and implementation of campus outdoor spaces is the key factor in improving its thermal conditions. Thus, adhering to the practical recommendations bring a significant improvement in ameliorating the rise in atmospheric temperature on campus outdoors.
Publisher
Universiti Putra Malaysia
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference46 articles.
1. Abaas, Z. R. (2020). Impact of development on Baghdad’s urban microclimate and human thermal comfort. Alexandria Engineering Journal, 59(1), 275-290. https://doi.org/10.1016/j.aej.2019.12.040
2. Aboulnaga, M., & Mostafa, M. (2020). Climate change adaptation: Prioritising districts for urban green coverage to mitigate high temperatures and UHIE in developing countries. In Renewable Energy and Sustainable Buildings (pp. 825-837). Springer. https://doi.org/10.1007/978-3-030-18488-9_68
3. Adunola, A. O. (2014). Evaluation of urban residential thermal comfort in relation to indoor and outdoor air temperatures in Ibadan, Nigeria. Building and Environment, 75, 190-205. https://doi.org/10.1016/j.buildenv.2014.02.007
4. Akande, O. K., & Adebamowo, M. A. (2010, April 9-11). Indoor thermal comfort for residential buildings in hot-dry climate of Nigeria. In Proceedings of Conference: Adapting to Change: New Thinking on Comfort (Vol. 911, pp. 133-144). Windsor, UK.
5. Al-Mohsen, M. A. S., Ismail, S., & Ismail, I. S. (2020). Improving thermal comfort through natural ventilation and passive solar systems in residential buildings in Iraq: Review paper. International Conference in Architecture and Civil Engineering, 59, 207-216. https://doi.org/10.1007/978-981-15-1193-6_24
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献