Assessing the Impacts of Competition and Dispersal on a Multiple Interactions Type Model

Author:

Aliyu Murtala Bello,Mohd Mohd Hafiz,Md. Noorani Mohd Salmi

Abstract

Multiple interactions (e.g., mutualist-resource-competitor-exploiter interactions) type models are known to exhibit oscillatory behaviour as a result of their complexity. This large-amplitude oscillation often de-stabilises multispecies communities and increases the chances of species extinction. What mechanisms help species in a complex ecological system to persist? Some studies show that dispersal can stabilise an ecological community and permit multi-species coexistence. However, previous empirical and theoretical studies often focused on one- or two-species systems, and in real life, we have more than two-species coexisting together in nature. Here, we employ a (four-species) multiple interactions type model to investigate how competition interacts with other biotic factors and dispersal to shape multi-species communities. Our results reveal that dispersal has (de-)stabilising effects on the formation of multi-species communities, and this phenomenon shapes coexistence mechanisms of interacting species. These contrasting effects of dispersal can best be illustrated through its combined influences with the competition. To do this, we employ numerical simulation and bifurcation analysis techniques to track the stable and unstable attractors of the system. Results show the presence of Hopf bifurcations, transcritical bifurcations, period-doubling bifurcations and limit point bifurcations of cycles as we vary the competitive strength in the system. Furthermore, our bifurcation analysis findings show that stable coexistence of multiple species is possible for some threshold values of ecologically-relevant parameters in this complex system. Overall, we discover that the stability and coexistence mechanisms of multiple species depend greatly on the interplay between competition, other biotic components and dispersal in multi-species ecological systems.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3