Author:
Hasni, R.,Mojdeh, D. A,Bakar, S. A.
Abstract
A graph G is referred to as domination vertex critical if the removal of any vertex results in
a reduction of the domination number. It is considered dot-critical (or totally dot-critical) if
contracting any edge (or identifying any two vertices) leads to a decrease in the domination number. In this concise paper, we delve into the investigation of these properties and proceed to characterize the dot-critical and totally dot-critical attributes of Harary graphs.
Publisher
Universiti Putra Malaysia
Reference10 articles.
1. H. A. Ahangar & M. Khaibari (2017). Graphs with large Roman domination number. Malaysian Journal of Mathematical Sciences, 11(1), 71–81.
2. T. Burton (2001). Domination Dot-Critical Graphs. PhD thesis, University of South Carolina, Columbia, USA.
3. T. Burton & D. P. Summer (2006). Domination dot-critical graphs. Discrete Mathematics, 306(1), 11–18. https://doi.org/10.1016/j.disc.2005.06.029.
4. T. W. Haynes, S. Hedetniemi & P. Slater (1998). Fundamentals of Domination in Graphs. Marcel Dekker Inc., New York, NY.
5. Z. Kartal & A. Aytaç (2020). Semitotal domination of Harary graphs. Tbilisi Mathematical Journal, 13(3), 11–17. https://doi.org/10.32513/tbilisi/1601344895.