Author:
Anisuzzaman S. M.,G. Joseph Collin,Ismail Fatin Nadiah
Abstract
The study aims to obtain spray-dried tomato powders with a high and effective product yield and enhanced powder quality. The experiment for this investigation entailed the use of several carrier agents, which were maltodextrin (MD) of 4-7 dextrose equivalents (DE), MD of 10-12 DE, and gum Arabic (GA), each in varied concentrations of 5% and 10% with spray drying inlet temperatures of 140°C, 150°C, and 160°C. Powder yield, bulk density, hygroscopicity, moisture content, water solubility, water absorption, color properties, particle size, and powder morphology were all evaluated in spray-dried tomato powders. The results revealed that the stability of the tomato powder is considerably better at high temperatures and concentrations (at 10%, 160oC), with MD 4-7 DE being the best carrier agent among the three tested carrier agents. According to the powder analysis, the product has a moisture content of 3.17 ± 0.29%, the highest yield percentage of 32.1%, a low bulk density of 0.2943 ± 0.01 g/cm3, the lowest hygroscopicity at 5.67± 0.58 %, a high water solubility index (WSI) at 89.98 ± 1.25%, a low water absorption index (WAI) at 6.22 ± 0.22%, an intermediate particle size of 24.73 µm, and color L*, a*,b* values at 31.59 ± 0.03, 11.62 ± 0.08 and 13.32 ± 0.12. The result showed that at higher temperatures and higher concentrations, the powder characteristics are more likely to have a higher yield, WSI, and larger particle size, as well as lower bulk density, hygroscopicity, moisture content, WAI, and color index.
Publisher
Universiti Putra Malaysia
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference50 articles.
1. Adak, N., Heybeli, N., & Ertekin, C. (2017). Infrared drying of strawberry. Food Chemistry, 219, 109-116. https://doi.org/10.1016/j.foodchem.2016.09.103
2. Aderibigbe, O. R., Owolade, O. S., Egbekunle, K. O., Popoola, F. O., & Jiboku, O. O. (2018). Quality attributes of tomato powder as affected by different pre-drying treatments. International Food Research Journal, 25(3), 1126-1132.
3. AOAC. (2012). Official Methods of Analysis: Association of Official Analytical Chemists (19th ed.). https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1819676
4. Bhandari, B., & Howes, T. (2005). Relating the stickiness property of foods undergoing drying and dried products to their surface energetics. Drying Technology, 23(4), 781-797. https://doi.org/10.1081/DRT-200054194
5. Cai, Y. Z., & Corke, H. (2000). Production and properties of spray-dried amaranthus betacyanon pigments. Journal of Food Science, 65(7), 1248-1252. https://doi.org/10.1111/j.1365-2621.2000.tb10273.x