Real-Time Traffic Sign Recognition Using Deep Learning

Author:

Shivayogi Ananya Belagodu,Matasagara Dharmendra Nehal Chakravarthy,Ramakrishna Anala Maddur,Subramanya Kolala Nagaraju

Abstract

Traffic Sign Recognition (TSR) is one of the most sought-after topics in computer vision, mostly due to the increasing scope and advancements in self-driving cars. In our study, we attempt to implement a TSR system that helps a driver stay alert during driving by providing information about the various traffic signs encountered. We will be looking at a working model that classifies the traffic signs and gives output in the form of an audio message. Our study will be focused on traffic sign detection and recognition on Indian roads. A dataset of Indian road traffic signs was created, based upon which our deep learning model will work. The developed model was deployed on NVIDIA Jetson Nano using YOLOv4 architecture, giving an accuracy in the range of 54.68–76.55% on YOLOv4 architecture. The YOLOv4-Tiny model with DeepStream implementation achieved an FPS of 32.5, which is on par with real-time detection requirements.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3