Transfer Learning VGG16 Model for Classification of Tomato Plant Leaf Diseases: A Novel Approach for Multi-Level Dimensional Reduction

Author:

Borugadda Premkumar,Lakshmi Ramasami,Sahoo Satyasangram

Abstract

Tomato is the most popular and cultivated crop in the world. Nevertheless, the quality and quantity of tomato crops have been declining due to various diseases that afflict tomato crops. Hence, it becomes necessary to detect the disease early to prevent crop damage and increase the yield. The proposed model in this article predicts the infected tomato leaf images (9 classified diseases and also healthy class) obtained from the Plant Village dataset. In this model, Transfer learning was used to extract features from images by VGG16, yielding a high dimension of 25088 features. Overfitting is a commonly anticipated problem because of the higher dimensionality of data. To mitigate this problem, the authors have adopted a novel dimensional reduction-based technique: filter methods, feature extraction techniques like Principal Components Analysis (PCA), and the Boruta feature selection technique of wrapper methods. This adoption enables the proposed model to attain a significantly improved high accuracy of 95.68% and 95.79% in MLP and VGG16, respectively, by reducing its initial dimension on the tomato dataset containing 18160 images across 10 classes.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3