Adaptive Threshold-based Fault Detection for Systems Exposed to Model Uncertainty and Deterministic Disturbance

Author:

Ahmad Masood,Mohd-Mokhtar Rosmiwati

Abstract

The fault detection problem is investigated for discrete-time linear uncertain systems. Instead of designing a fault detection system from the viewpoint of observer design for robust residual generation, an adaptive threshold approach is proposed to attain robustness against disturbance and norm-bounded model uncertainty. The main goal of the research is to develop a threshold design method that could establish an appropriate trade-off between false alarms and missed fault detection in the presence of model uncertainty. For this purpose, the H∞ optimization technique is adopted in the linear matrix inequality framework to compute the unknown parameters of an adaptive threshold. It is shown that the proposed fault detection system based on an adaptive threshold depends only on the system parameters and the control input of the monitored system. It is independent of robust residual generator designs in traditional observer-based fault detection systems. The effectiveness of the proposed approach is verified on two well-known benchmark systems: a direct-current motor and three tank systems. Several types of faults are successfully detected in both applications.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3