Intelligence System via Machine Learning Algorithms in Detecting the Moisture Content Removal Parameters of Seaweed Big Data

Author:

Joshua Ibidoja Olayemi,Pei Shan Fam,Eri Suheri Mukhtar,Sulaiman Jumat,Majahar Ali Majid Khan

Abstract

The parameters that determine the removal of moisture content have become necessary in seaweed research as they can reduce cost and improve the quality and quantity of the seaweed. During the seaweed’s drying process, many drying parameters are involved, so it is hard to find a model that can determine the drying parameters. This study compares seaweed big data performance using machine learning algorithms. To achieve the objectives, four machine learning algorithms, such as bagging, boosting, support vector machine, and random forest, were used to determine the significant parameters from the data obtained from v-GHSD (v-Groove Hybrid Solar Drier). The mean absolute percentage error (MAPE) and coefficient of determination (R2) were used to assess the model. The importance of variable selection cannot be overstated in big data due to the large number of variables and parameters that exceed the number of observations. It will reduce the complexity of the model, avoid the curse of dimensionality, reduce cost, remove irrelevant variables, and increase precision. A total of 435 drying parameters determined the moisture content removal, and each algorithm was used to select 15, 25, 35 and 45 significant parameters. The MAPE and R-Square for the 45 highest variable importance for random forest are 2.13 and 0.9732, respectively. It performed best, with the lowest error and the highest R-square. These results show that random forest is the best algorithm to decide the vital drying parameters for removing moisture content.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3