The Predictive Ability of Total Genotype Score and Serum Metabolite Markers in Power-Based Sports Performance Following Different Strength Training Intensities — A Pilot Study

Author:

Khairul Elin Elisa,Ab Wahab Wan Atiyyah,Kek Teh Lay,Salleh Mohd Zaki,Rofiee Mohd Salleh,Raja Azidin Raja Mohammed Firhad,Md. Yusof Sarina

Abstract

Muscular power is one of the factors that contribute to an athlete’s performance. This study aimed to explore the predictive ability of total genotype score (TGS) and serum metabolite markers in power-based sports performance following different strength training (ST) intensities. We recruited 15 novice male field hockey players (age = 16.27 ± .12 years old, body mass index = 22.57 ± 2.21 kg/m2) and allocated them to; high-intensity strength training (HIST, n=5), moderate intensity strength (MIST, n=5), and control group (C, n=5). Both training groups completed an eight-week ST intervention. Pre- and post-training muscular power (vertical jump) was measured. The participants were genotyped for; ACE (rs1799752), ACTN3 (rs1815739), ADRB3 (rs4994), AGT (rs699), BDKRB2 (rs1799722), PPARA (rs4253778), PPARGC1A (rs8192678), TRHR (rs7832552), and VEGF (rs1870377). TGS was calculated to annotate for strength-power (STP) and endurance (END) qualities. Subsequently, serum metabolomics analysis was conducted using Liquid chromatography-mass spectrometry Quadrupole-Time-of-Flight (LC-MS QTOF) to profile differentially expressed metabolite changes induced by training. Multiple regression analysis was conducted to explore the ability of TGS and differentially expressed metabolite markers to predict muscular power changes following the intervention. Multiple Regression revealed that only TGS STP might be a significant predictor of muscular power changes following MIST (adjusted R2=.906, p<.05). Additionally, ST also resulted in significant muscular power improvement (p<.05) and perturbation of the sphingolipid metabolism pathway (p<.05). Therefore, selected gene variants may influence muscular power. Therefore, STP TGS might be able to predict muscular power changes following MIST.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3