Correlation Between Clinical Features of Type 2 Diabetes Mellitus with CT Findings of Fatty Liver Patients
-
Published:2023-03-31
Issue:3
Volume:31
Page:1313-1324
-
ISSN:2231-8526
-
Container-title:Pertanika Journal of Science and Technology
-
language:en
-
Short-container-title:JST
Author:
Osman Hanady Elyas,Osama Huda,Yousef Mohamed,Alsalamah Amal,Bushara Lubna,Abdalaziz Ikhlas
Abstract
People with fatty liver disease are at major risk of liver cirrhosis and malignancies. This study aims to evaluate the correlation between fatty liver and diabetes features on computed tomography (CT) using Hounsfield units for the liver and spleen. The research was conducted in Jeddah Hospital’s Medical Imaging Department and CT scan department from March 2018 until March 2020. A total of 50 patients with diabetes were chosen randomly, with males (26) and females (24) ranging in age from 31 to 80 years old. Descriptive statistics of body mass index were recorded for the liver and the spleen; the main liver enzymes were Alanine aminotransferase (ALT), Gamma-glutamyltransferase (GGT), albumin, total bilirubin, and direct bilirubin, which were measured and analyzed using the Statistical Package for the Social Sciences program, version 23. We found a significant correlation of ALT and direct bilirubin with liver and spleen HU at p value < 0.017 and < 0.073, respectively; the mean and standard deviation for the other liver enzymes GGT, albumin, and total bilirubin in segment 3 of the left liver were 45.48 ± 7.077 HU, 45.00 ± 7.797 HU, 36.67 ± 5.776 HU, and 37.23 ± 4.885 HU, respectively. We concluded that fatty liver is associated with type 2 diabetes mellitus symptoms such as high ALT and direct bilirubin, with no significant association between GGT, albumin, total bilirubin, and liver and spleen HU.
Publisher
Universiti Putra Malaysia
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference12 articles.
1. Ballestri, S., Lonardo, A., Romagnoli, D., Carulli, L., Losi, L., Day, C. P., & Loria, P. (2012). Ultrasonographic fatty liver indicator, a novel score which rules out Nash and is correlated with metabolic parameters in NAFLD. Liver International, 32(8), 1242-1252. https://doi.org/10.1111/j.1478-3231.2012.02804.x 2. Lonardo, A., Bellentani, S., Argo, C. K., Ballestri, S., Byrne, C. D., Caldwell, S. H., Cortez-Pinto, H., Grieco, A., Machado, M. V., Miele, L., & Targher, G. (2015). Epidemiological modifiers of non-alcoholic fatty liver disease: Focus on high-risk groups. Digestive and Liver Disease, 47(12), 997-1006. https://doi.org/10.1016/j.dld.2015.08.004 3. Manaviat, M. R., Rashidi, M., Afkhami-Ardekani, M., & Shoja, M. R. (2008). Prevalence of dry eye syndrome and diabetic retinopathy in type 2 diabetic patients. BMC Ophthalmology, 8(1), Article 10. https://doi.org/10.1186/1471-2415-8-10 4. Matteoni, C., Younossi, Z., Gramlich, T., Boparai, N., Liu, Y., & Mccullough, A. (1999). Nonalcoholic fatty liver disease: A spectrum of clinical and pathological severity. Gastroenterology, 116(6), 1413-1419. https://doi.org/10.1016/s0016-5085(99)70506-8 5. Nagata, N., Sakamoto, K., Arai, T., Niikura, R., Shimbo, T., Shinozaki, M., Aoki, T., Kishida, Y., Sekine, K., Tanaka, S., Okubo, H., Watanabe, K., Sakurai, T., Yokoi, C., Akiyama, J., Yanase, M., Noda, M., Itoh, T., Mizokami, M., & Uemura, N. (2014). Visceral abdominal fat measured by computed tomography is associated with an increased risk of colorectal adenoma. International Journal of Cancer, 135(10), 2273-2281. https://doi.org/10.1002/ijc.28872
|
|