The Photophysiology of Benthic Diatoms in the Intertidal Flats of Pulau Pinang (Malaysia)
-
Published:2023-03-06
Issue:2
Volume:31
Page:911-931
-
ISSN:2231-8526
-
Container-title:Pertanika Journal of Science and Technology
-
language:en
-
Short-container-title:JST
Author:
Salleh Sazlina,Cheng Elaine Ee Ling,Hossain Md. Solaiman,Samad Shakila,Abdul Mubin Nur Ain Amani,Muhamad Darif Nur Aqilah,G Jonik Michelle Glory,Mohammad Mahadi
Abstract
The in-situ photosynthetic activity in tropical intertidal benthic diatom in response to environmental variation was assessed in this study by measuring chlorophyll fluorescence. The investigation was carried out during the lowest tide in January (non-rainy day) and February 2013 (post-rainy day) at two sampling sites (A and B) from each selected location (Pantai Jerejak, Teluk Bahang and Tanjung Bungah, Pulau Pinang, Malaysia). Samples of surface sediment (top 0.5 cm) were collected, and chlorophyll a extracted as biomass estimation. Assessments of the photosynthetic activity of benthic diatoms were made using a pulse-amplitude modulated (PAM) fluorometer. Fifty-three species were identified, representing 27 genera from the three studied locations. Both locations showed similarities in species diversity and abundance. Two-way ANOVA showed no significant differences (p = 0.430) in species richness (Margalef Index) among sampling locations, with an average value of 6.33±0.247. Both intertidal flats were dominated by Cocconeis, Navicula, Actinoptychus, and Diploneis. The community has low maximum quantum yields, Fv/Fm (ranging from 0.170 to 0.340) and is often light-limited (Photoacclimation Index, Ek, ranging from 67.96 to 236.71 mol photons m-2 s-1). The relative electron transport rate (rETRmax) was low, with values ranging from 3.45 to 35.51 across three sampling locations. Fluctuation in salinity has caused a decrease in photosynthetic activity. This study suggests that the low values indicated a poorly adapted benthic microalgal community that is constantly light-limited. However, time-series data is needed to determine the ability of these communities to adapt to the changing environment.
Publisher
Universiti Putra Malaysia
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference50 articles.
1. Abdullah, A. L., Yasin, Z., Shutes, B. R., & Fitzsimons, M. (2011). Sediment fallout rates in Tanjung Rhu coral reefs. Kajian Malaysia, 29(2), 1-30. 2. Béchet, Q., Laviale, M., Arsapin, N., Bonnefond, H., & Bernard, O. (2017). Modeling the impact of high temperatures on microalgal viability and photosynthetic activity. Biotechnology for Biofuels, 10, Article 136. https://doi.org/10.1186/s13068-017-0823-z 3. Cahoon, L. B., Nearhoof, J. E., & Tilton, C. L. (1999). Sediment grain size effect on benthic microalgal biomass in shallow aquatic ecosystems. Estuaries, 22, 735-741. https://doi.org/10.2307/1353106 4. Cartaxana, P., Ribeiro, L., Goessling, J. W., Cruz, S., & Kühl, M. (2016). Light and O2 microenvironments in two contrasting diatom-dominated coastal sediments. Marine Ecology Progress Series, 545, 35-47. https://doi.org/10.3354/meps11630 5. Cartaxana, P., Ruivo, M., Hubas, C., Davidson, I., Serôdio, J., & Jesus, B. (2011). Physiological versus behavioral photoprotection in intertidal epipelic and epipsammic benthic diatom communities. Journal of Experimental Marine Biology and Ecology, 405(1-2), 120-127. https://doi.org/10.1016/j.jembe.2011.05.027
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|