Workload Characterization and Classification: A Step Towards Better Resource Utilization in a Cloud Data Center

Author:

Katal Avita,Dahiya Susheela,Choudhury Tanupriya

Abstract

Advancements in virtualization technology have led to better utilization of existing infrastructure. It allows numerous virtual machines with different workloads to coexist on the same physical server, resulting in a pool of server resources. It is critical to understand enterprise workloads to correctly create and configure existing and future support in such pools. Managing resources in a cloud data center is one of the most difficult tasks. The dynamic nature of the cloud environment, as well as the high level of uncertainty, has created these challenges. These applications’ diverse Quality of Service (QoS) requirements make data center management difficult. Accurate forecasting of future resource demand is required to meet QoS needs and ensure better resource utilization. Consequently, data center workload modeling and categorization are needed to meet software quality solutions cost-effectively. This paper uses traces of Bitbrain’s data to characterize and categorize workload. Clustering (K Means and Gaussian mixture model) and Classification strategies (K Nearest Neighbors, Logistic Regression, Decision Trees, Random Forest, and Support Vector Machine) characterize and model the workload traces. K Means shows better results as compared to GMM when compared to the Calinski Harabasz index and Davies-Bouldin score. The results showed that the Decision Tree achieves the maximum accuracy of 99.18%, followed by K Nearest Neighbor (KNN), Random Forest (RF), Support Vector Machine (SVM) Logistic Regression (LR), Multi-Layer Perceptron (MLP), and Back Propagation Neural Networks.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3