ESS-IoT: The Smart Waste Management System for General Household Shen Yuong Wong, Huashuo Han, Kin Meng Cheng, Ah Choo Koo and Salman Yussof

Author:

Wong Shen Yuong,Han Huashuo,Cheng Kin Meng,Koo Ah Choo,Yussof Salman

Abstract

With the urban population’s growth, unethical and unmanaged waste disposal may negatively impact the environment. In many cities, a massive flow of people in municipal buildings or offices has generated vast amounts of waste daily, which correlates to the enormous expenses of waste management. The critical issue for better waste management is waste collection and sorting. In this study, the Electronic Smart Sorting- Internet of Things (ESS-IoT) is proposed to assist people in better waste management. The ESS-IoT system uses Raspberry Pi 4b as the microcontroller with three modules, and it is designed with two main functions: waste collection and waste classification. The two main functions have been deployed separately in the literature, while this study has combined both functions to achieve a more comprehensive smart bin waste disposal solution. Waste collection is triggered by the overflow alarm mechanism that employs ultrasonic and tracker sensors. On the other hand, the waste classification is implemented using two classification algorithms: Random Forest (RF) prediction model and Convolutional Neural Network (CNN) prediction model. An experiment is conducted to evaluate the accuracy of the two classification algorithms in classifying various types of waste. The waste materials under investigation can be classified into four categories: kitchen waste, recyclables, hazardous waste, and other waste. The results show that CNN is the better classification algorithm between the two. Future work proposes the research extension by introducing an incentive mechanism to motivate the household communities using a cloud-based competition platform incorporated with the ESS-IoT system.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3