Polynomial Regression Calibration Method of Total Dissolved Solids Sensor for Hydroponic Systems

Author:

Jamil Ansar,Sheng Ting Teo,Zainal Abidin Zuhairiah,Othman Maisara,Abdul Wahab Mohd Helmy,Abdullah Mohammad Faiz Liew,Homam Mariyam Jamilah,Muhammad Audah Lukman Hanif,Mohd Shah Shaharil

Abstract

Smart hydroponic systems have been introduced to allow farmers to monitor their hydroponic system conditions anywhere and anytime using Internet of Things (IoT) technology. Several sensors are installed on the system, such as Total Dissolved Solids (TDS), nutrient level, and temperature sensors. These sensors must be calibrated to ensure correct and accurate readings. Currently, calibration of a TDS sensor is only possible at one or a very small range of TDS values due to the very limited measurement range of the sensor. Because of this, we propose a TDS sensor calibration method called Sectioned-Polynomial Regression (Sec-PR). The main aim is to extend the measurement range of the TDS sensor and still provide a good accuracy of the sensor reading. Sec-PR computes the polynomial regression line that fits into the TDS sensor values. Then, it divides the regression line into several sections. Sec-PR calculates the average ratio between the polynomial regressed TDS sensor values and the TDS meter in each section. These average ratio values map the TDS sensor reading to the TDS meter. The performance of Sec-PR was determined using mathematical analysis and verified using experiments. The finding shows that Sec-PR provides a good calibration accuracy of about 91% when compared to the uncalibrated TDS sensor reading of just 78% with Mean Average Error (MAE) and Root Mean Square Error (RMSE) equal to 59.36 and 93.69 respectively. Sec-PR provides a comparable performance with Machine Learning and Multilayer Perception method.

Publisher

Universiti Putra Malaysia

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3