Analysis of Safety Relevant Wheel Individual Brake Torque Requirements for City EVs

Author:

Loss Tobias, ,Peter Simon,Verhagen Armin,Görges Daniel,

Abstract

Current electric vehicles (EVs) already perform most braking maneuvers by recuperation using the electric powertrain. In order to generate additional benefits regarding cost, weight, brake dust emission and design freedom, there might be the option to omit the brake system and solely brake by recuperation. The potential elimination or downsizing of the friction brakes results in multiple questions concerning deceleration capabilities, availability of brake torques as well as driving dynamics. Especially for EVs with the electric motor located centrally at the axle, wheel individual braking interventions may not be possible without additional measures. This study investigates the brake torque requirements for the rear axle of an electrically driven urban vehicle with rear axle drivetrain. The focus of the analysis is targeted on wheel individual brake torque generation as such differential brake torques may be relevant for state of the art (SoA) driving safety and electronic stability control (ESC) interventions. In order to examine the wheel individual brake torque requirements a Simulink based software in the loop (SiL) simulation environment for vehicle dynamics is utilized. It simulates the dynamic behavior of vehicles with focus on the brake system. The main feature is the integration of software in the loop control algorithms of an ESC system with powertrain, vehicle behavior and electronics also being included. To maintain expert knowledge and application effort, a simulation model and ESC software of a SoA series production urban EV is used. This model is applied to a vehicle test catalogue for ESC software release covering maneuvers that allow testing of different driving stability functions. Based on the simulation results and supported by real world measurement data, the most critical driving maneuvers concerning the amount of differential brake torque, its direction and dynamics are identified. The test catalogue includes driving scenarios such as acceleration on inhomogeneous surfaces. In case of a vehicle equipped with a conventional open differential the maximum drive torque of the entire axle is limited by the lower friction wheel. Wheel individual brake applications can increase this drive torque. Such intervention may not be possible in vehicles without a conventional brake system topology. As a result, acceleration on such surface is restricted. Further maneuvers examined are dynamic cornering situations that may require wheel individual brake torque to ensure driving stability and safety. An in-depth analysis of the SoA vehicle behavior and its control strategy is necessary to understand potentials and limitations of EVs with non-conventional brake topologies.

Publisher

FISITA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3