Avaliação da performance do algoritmo J48 para construção de modelos baseados em árvores de decisão

Author:

Araujo Vieira Elamara Marama de,Neves Nívea Trindade de A. T.,De Oliveira Ana Carolina C.,De Moraes Ronei Marcos,Do Nascimento João Agnaldo

Abstract

As árvores de decisão são modelos hierárquicos utilizados em várias áreas do conhecimento por sua capacidade preditiva e de resolução de problemas de maneira simples e objetiva. Entretanto, apresentam algumas limitações relacionadas à sua adequação à base de dados e ao se atentar quanto aos procedimentos para seleção dos parâmetros de crescimento e poda a serem adotados. Desta forma, têm-se como objetivo avaliar e discutir a performance do algoritmo J48 para construção de modelos de tomada de decisão em árvore em base de dados com atributos de diferentes tipos. Para tanto, realizaram-se experimentos em 10 bases de dados disponíveis em repositório internacional, considerando como variantes os métodos de treinamento, teste e poda, aplicados em toda base de dados e com o uso dos métodos Wrapper e CFS (Correlation-based Feature Selection) para seleção de atributos. Identificou-se que na presença de dados contínuos, os únicos modelos que apresentaram boa capacidade preditiva estiveram presentes em situações em que a grande quantidade de exemplos puderam compensar tal deficiência. Os modos de treinamento "validação cruzada" e "divisão por porcentagem" mostraram-se similares em suas predições quando ajustados a 10 folds e 75%, respectivamente. Ademais, a seleção de atributos não foi capaz de gerar melhores predições denotando que tal método de forma isolada não compensa possíveis inadequações nas bases de dados. Pode-se constatar que os resultados referentes à capacidade preditiva dos modelos são fortemente direcionados pelo quantitativo de exemplos pertencentes à base, presença de dados contínuos e de dados com ruído.

Publisher

UPF Editora

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3