Towards optimisation of the number of threads in the integration platform engines using simulation models based on queueing theory

Author:

G. Haugg Igor,Z. Frantz Rafael,Roos-Frantz Fabricia,Sawicki Sandro,Zucolotto Benjamim

Abstract

The use of applications is important to support the business processes of companies. However, most of these applications are not designed to function collaboratively. An integration solution orchestrates a group of applications, allowing data and functionality reuse. The performance of an integration solution depends on the optimum configuration of the number of threads in the runtime engine provided by the integration platforms. It is common that this configuration relies on the empirical knowledge of the software engineers, and it has a direct impact on the performance of integration solutions. The optimum number of threads may be found by means of simulation models. This article presents a methodology and a tool to assist with the generation of simulation models based on queuing theory, in order to find the optimum number of threads to execute an integration solution focusing on performance improvement. We introduce a case of study to demonstrate and experiments to evaluate our proposal.

Publisher

UPF Editora

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3