Controlled drainage, to cope with the adverse impacts of climate change on paddy field’s hydrology: a simulation study using the drainmod model, Kunshan, China

Author:

Rehman Khalil Anis Ur

Abstract

A study was carried out to assess the DRAINMOD model in predicting the role of Controlled Drainage strategies and Drain Spacing scenarios in the paddy field. The DRAINMOD model was simulated for the current (2018), Near Future 2021 to 2060 and Far Future 2061 to 2099 in the Kunshan region, China. Potential Evapotranspiration was estimated by the Thornthwaite method. The model performed good agreement in predicting paddy’s water balance for the period of 2017-18. Also, Projections of the future climate in the Kunshan region, showed that there will be a decrease in the annual precipitation during rice-growing seasons for both Near Future (2021-2060) and Far Future (2061-2099). The DRAINMOD model was utilized to evaluate the impact of such a future decrease in precipitation on ground Water Tables Depth. Compared to the rice-growing season of 2018, DRAINMOD simulations showed that future Water Table Depths will drop by 38% to 40% for both the Near Future and Far Future under the Representative Concentration Pathway (RCP) 4.5 and RCP 8.5. Such future remarkable drop in Water Table Depths may affect rice yield in the study region. The future water balance in the study area was re-simulated after replacing conventional drainage with Controlled Drainage and an increase in the drain spacing. Simulations revealed that practicing Controlled Drainage and an increase in drain spacing mitigated the future drop in Water Table Depths, thus ensuring better soil moisture conditions for rice. Therefore, Controlled Drainage approaches have the potential to cope with the adverse impacts of climate changes in the paddy fields.

Publisher

Pakistan Journal of Agricultural Sciences

Subject

Plant Science,Soil Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3