MOBILITY AND DISTRIBUTION OF LEAD IN SOILS TREATED WITH MUNICIPAL SOLID WASTE ASH

Author:

Alghamdi Abdulaziz G

Abstract

Lead (Pb) is an inorganic conservative pollutant poses a risk to soils and water resources. Quantifying the potential hazard impacts of Pb in soils needs further circumstances about its mobility and retention as well. The objective of this study was to evaluate the effects of municipal solid waste ash (MSWA) on mobility and distribution of Pb in two types of soil textures. The extent of Pb mobilization in soils amended with different application rates of MSWA has been quantified by soil columns experiment under steady state conditions. Transport of Pb was studied in soil columns by applying Pb solution of 150 mg/L at the rate of 0.09 cm/min for loamy sand soil and 0.035 cm/min for sandy loam soil. The mathematical model- HYDRUS-2D was used to describe this transport. The results indicated that Pb concentrations were extremely low in the leaching solutions collected from soil columns over time regardless of the application rates of MSWA. Application of MSWA increased the recovery of Pb in both soils achieving superiority in loamy sand soil. The Pb distributed in the soil columns ranged between soil leaching solutions and sorbed phase, of which the greater portion was in the sorbed phase. Lead move slowly through soils columns and the distance of movement was about 5 cm to the soil surface and then the concentrations decreased down the soil columns and later disappeared beyond a depth of to 7 cm. Mass balance calculations of Pb according to the HYDRUS-2D mathematical model resulted in values that were similar to those of the experimental data (error ≤ 5%). A soil quality indicator is considered as a key element of sustainable agriculture and hence soil quality plays an important role in deciding the MSWA methods.

Publisher

Pakistan Journal of Agricultural Sciences

Subject

Plant Science,Soil Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3