PROPERTIES OF PHYSARUM MYOSIN PURIFIED BY A POTASSIUM IODIDE PROCEDURE

Author:

Nachmias V. T.1

Affiliation:

1. From the Department of Anatomy, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19174

Abstract

Myosin has been purified free of actin from Physarum actomyosin by a two step adaptation of the classical potassium iodide method for depolymerizing actin. On 12% sodium dodecyl sulfate (SDS) gels, the single major slowly moving protein band present in the calcium activated adenosine triphosphatase peak (90% pure) is associated with two fast moving bands of molecular weights of approximately 17,000 and 21,000 daltons, respectively. Densitometry shows the molar ratio of heavy chains to the 21,000 and 17,000 dalton chains on the gels to be 1:2:1. The highly purified myosin forms filaments up to 2.5 µm long in the presence of 5 mM magnesium and 0.05 M KCl. Calcium ions were not required for the formation of long filaments from this highly purified myosin. At low ionic strength (0.05 M KCl) the magnesium ATPase of the highly purified myosin is activated four- to tenfold by muscle actin. The extent of activation is a function of the actin concentration and levels off at high levels of actin. In 0.1 mM calcium salts the ATPase activity is approximately 60% of that in 1 mM EGTA. In summary, Physarum myosin is similar to a number of muscle myosins as well as to platelet and fibroblast myosin, which all possess light chains of two different molecular weights associated with the heavy chains. Under ionic conditions close to those in vivo, highly purified Physarum myosin aggregates into long filaments.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3