Affiliation:
1. Fred Hutchinson Cancer Research Center, Seattle, Washington 98109; Department of Medicine, Division of Dermatology, University of Washington, Seattle, Washington 98198; Department of Pathobiology, University of Washington, Seattle, Washington 98198; and Hormone Research Center, Chonnam National University, Kwangju 500-757, South Korea
Abstract
Laminin 5 regulates anchorage and motility of epithelial cells through integrins α6β4 and α3β1, respectively. We used targeted disruption of the LAMA3 gene, which encodes the α3 subunit of laminin 5 and other isoforms, to examine developmental functions that are regulated by adhesion to the basement membrane (BM). In homozygous null animals, profound epithelial abnormalities were detected that resulted in neonatal lethality, consistent with removal of all α3-laminin isoforms from epithelial BMs. Alterations in three different cellular functions were identified. First, using a novel tissue adhesion assay, we found that the mutant BM could not induce stable adhesion by integrin α6β4, consistent with the presence of junctional blisters and abnormal hemidesmosomes. In the absence of laminin 5 function, we were able to detect a new ligand for integrin α3β1 in the epidermal BM, suggesting that basal keratinocytes can utilize integrin α3β1 to interact with an alternative ligand. Second, we identified a survival defect in mutant epithelial cells that could be rescued by exogenous laminin 5, collagen, or an antibody against integrin α6β4, suggesting that signaling through β1 or β4 integrins is sufficient for survival. Third, we detected abnormalities in ameloblast differentiation in developing mutant incisors indicating that events downstream of adhesion are affected in mutant animals. These results indicate that laminin 5 has an important role in regulating tissue organization, gene expression, and survival of epithelium.
Publisher
Rockefeller University Press
Cited by
281 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献