Affiliation:
1. Department of Pharmacology, Department of Radiation Oncology, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
Abstract
Specificity and modulation of integrin function have important consequences for cellular responses to the extracellular matrix, including differentiation and transformation. The Ras-related GTPase, R-Ras, modulates integrin affinity, but little is known of the signaling pathways and biological functions downstream of R-Ras. Here we show that stable expression of activated R-Ras or the closely related TC21 (R-Ras 2) induced integrin-mediated migration and invasion of breast epithelial cells through collagen and disrupted differentiation into tubule structures, whereas dominant negative R-Ras had opposite effects. These results imply novel roles for R-Ras and TC21 in promoting a transformed phenotype and in the basal migration and polarization of these cells. Importantly, R-Ras induced an increase in cellular adhesion and migration on collagen but not fibronectin, suggesting that R-Ras signals to specific integrins. This was further supported by experiments in which R-Ras enhanced the migration of cells expressing integrin chimeras containing the α2, but not the α5, cytoplasmic domain. In addition, a transdominant inhibition previously noted only between integrin β cytoplasmic domains was observed for the α2 cytoplasmic domain; α2β1-mediated migration was inhibited by the expression of excess α2 but not α5 cytoplasmic domain-containing chimeras, suggesting the existence of limiting factors that bind the integrin α subunit. Using pharmacological inhibitors, we found that R-Ras induced migration on collagen through a combination of phosphatidylinositol 3-kinase and protein kinase C, but not MAPK, which is distinct from the other Ras family members, Rac, Cdc42, and N- and K-Ras. Thus, R-Ras communicates with specific integrin α cytoplasmic domains through a unique combination of signaling pathways to promote cell migration and invasion.
Publisher
Rockefeller University Press
Cited by
140 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献