Characterization and Expression of the Laminin γ3 Chain: A Novel, Non-Basement Membrane–associated, Laminin Chain

Author:

Koch Manuel1,Olson Pamela F.1,Albus Anne1,Jin William1,Hunter Dale D.1,Brunken William J.1,Burgeson Robert E.1,Champliaud Marie-France1

Affiliation:

1. The Cutaneous Biology Research Center, Massachusetts General Hospital, and the Department of Dermatology, Harvard Medical School, Charlestown, Massachusetts 02129; and The Departments of Neuroscience, Anatomy and Cell Biology, and Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts 02111

Abstract

Laminins are heterotrimeric molecules composed of an α, a β, and a γ chain; they have broad functional roles in development and in stabilizing epithelial structures. Here, we identified a novel laminin, composed of known α and β chains but containing a novel γ chain, γ3. We have cloned gene encoding this chain, LAMC3, which maps to chromosome 9 at q31-34. Protein and cDNA analyses demonstrate that γ3 contains all the expected domains of a γ chain, including two consensus glycosylation sites and a putative nidogen-binding site. This suggests that γ3-containing laminins are likely to exist in a stable matrix.Studies of the tissue distribution of γ3 chain show that it is broadly expressed in: skin, heart, lung, and the reproductive tracts. In skin, γ3 protein is seen within the basement membrane of the dermal-epidermal junction at points of nerve penetration. The γ3 chain is also a prominent element of the apical surface of ciliated epithelial cells of: lung, oviduct, epididymis, ductus deferens, and seminiferous tubules. The distribution of γ3-containing laminins on the apical surfaces of a variety of epithelial tissues is novel and suggests that they are not found within ultrastructurally defined basement membranes. It seems likely that these apical laminins are important in the morphogenesis and structural stability of the ciliated processes of these cells.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 219 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3