Mechanism of brush border contractility studied by the quick-freeze, deep-etch method.

Author:

Hirokawa N,Keller T C,Chasan R,Mooseker M S

Abstract

We have analyzed terminal web contraction in sheets of glycerinated chicken small intestine epithelium and in isolated intestinal brush borders using a quick-freeze, deep-etch, rotary shadow replication technique. In the presence of Mg-ATP at 37 degrees C, the terminal web region of each cell in the glycerinated sheet and of each isolated brush border became severely constricted at the level of its zonula adherens (ZA). Consequently, the individual brush borders rounded up, splaying out their microvilli in fanlike patterns. The most prominent ultrastructural changes that occurred during terminal web contraction were a dramatic decrease in the diameter of the circumferential ring composed of a bundle of 8-9-nm filaments adjacent to the zonula adherens and a decrease in the number of cross-linkers between the microvillus rootlets. Microvilli were not retracted into the terminal web. We have used myosin S1 decoration to demonstrate that most of the circumferential bundle filaments are actin and that the actin filaments are arranged in the bundle with mixed polarity. Some filaments within the bundle did not decorate with myosin S1 and had tiny projections that appeared to be attached to adjacent actin filaments. Because of their morphology and immunofluorescent localization of myosin within this region of the terminal web, we propose that these undecorated filaments are myosin. From these results, we conclude that brush border contraction is caused primarily by an active sliding of actin and myosin filaments within the circumferential bundle of filaments associated with the ZA.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 126 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3