Author:
Feldherr C M,Cohen R J,Ogburn J A
Abstract
The objective of this investigation was to determine whether there is mediated transport of endogenous proteins across the nuclear envelope. For this purpose, we studied the nuclear uptake of a 148,000-dalton Rana oocyte polypeptide (RN1) and compared its actual uptake rate with the rate that would be expected if RN1 crossed the envelope by simple diffusion through the nuclear pores. Nuclear uptake was studied in two ways: first, oocytes were incubated in L-[3H]leucine for 1 h and, at various intervals after labeling, the amount of 3H-RN1 present in the nucleoplasm was determined. Second, L-[3H]leucine-labeled nuclear extracts, containing RN1, were microinjected into the cytoplasm of nonlabeled cells, and the proportion of 3H-RN1 that subsequently entered the nucleus was measured. It was found that RN1 can readily penetrate the nuclear envelope; for example, after 6 h, approximately 36% of the newly synthesized RN1 and 17% of the injected RN1 had entered the nucleus. The diffusion rate through pores having a radius of 45 A was calculated for several possible molecular configurations of RN1. Using axial ratios of 34, 7.5, 2, and 1, the estimated times required to reach 63% of diffusion equilibrium are 757, 468, 6,940 h, and infinity, respectively. Even assuming an axial ratio of 7.5 (the most diffusive configuration) and an equilibrium distribution of 45, simple diffusion through the pores could account for only approximately 1/20 the observed nuclear uptake of RN1. This and other comparisons indicate that some form of mediated transport is involved in the nucleocytoplasmic exchange of this polypeptide.
Publisher
Rockefeller University Press
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献