LUMENAL PLASMA MEMBRANE OF THE URINARY BLADDER

Author:

Chlapowski Francis J.1,Bonneville Mary A.1,Staehelin L. Andrew1

Affiliation:

1. From the Biological Laboratories, Harvard University, Cambridge, Massachusetts 02138; the Department of Anatomy, University of Massachusetts Medical School, Worcester, Massachusetts 01604; and the Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80302

Abstract

A technique has been devised for isolation of lumenal plasma membranes from transitional epithelial cells lining the urinary bladder in rabbits and for subsequent separation of particle-bearing plaque regions from particle-free areas of the membranes. The success of the procedures employed and their effects on the isolates were assessed by electron microscopy of conventional plastic sections, negatively stained preparations, and freeze-etch replicas. When bladders are distended with a solution of 0.01 M thioglycolic acid, which reduces sulfhydryl bridges, cytoplasmic filaments are disrupted, and large segments of the lumenal membranes rupture and float free into the lumen. A centrifugation procedure was developed for isolating a fraction enriched with the large fragments. A comparison of membranes isolated in the presence of thioglycolate with those isolated from epithelial cells homogenized in sucrose medium indicates that thioglycolate has little effect on their fine structure except for the removal of filaments which are normally associated with their cytoplasmic surface. The curved plaques of hexagonally arrayed particles and the particle-free interplaque regions, both characteristic of membranes before exposure to thioglycolate, are well preserved. Subsequent treatment of thioglycolate-isolated lumenal membranes with 1% sodium desoxycholate (DOC) severs many of the interplaque regions, releasing individual plaques in which the particles are more clearly visible than before exposure to desoxycholate. Presumably, DOC acts by disrupting the hydrophobic bonds within the membrane; therefore, this type of cohesive force probably is a major factor maintaining the structural integrity of interplaque regions. This conclusion is consistent with the observation that interplaque regions undergo freeze-cleaving like simple bilayers with a plane of hydrophobic bonding.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3