PHOTORECEPTOR-PIGMENT EPITHELIAL CELL RELATIONSHIPS IN RATS WITH INHERITED RETINAL DEGENERATION

Author:

LaVail Matthew M.1,Sidman Richard L.1,O'Neil Deborah1

Affiliation:

1. From the Department of Neuropathology, Harvard Medical School, Boston, Massachusetts 02115

Abstract

Protein synthesis and displacement in photoreceptor and pigment epithelial cells of inbred normal (Fisher) and mutant (RCS) rats with inherited retinal degeneration has been studied by light and electron microscope radioautography. Groups of animals 14, 15, 17, 19, 27, 35, and 50 days of age were injected with amino acids-H3 and killed at subsequent time intervals. In normal rats, radioactive protein synthesized in the rod inner segments was incorporated into outer segment saccules and displaced outward; the total renewal time of outer segments at all ages was approximately 9 days. In RCS photoreceptors, outer segment displacement was slowed from the normal rate before day 17 and at all subsequent stages. Most of the newly synthesized protein appeared to migrate only into the basal third of the outer segments. Labeling of pigment epithelial cells in RCS rats was always heavier than in controls. Labeled protein was displaced as early as 1 hr postinjection from pigment epithelial cell somas into the apical processes, and by 2 hr postinjection was located in the adjacent lamellar whorls characteristic of the mutant rat retina. After 1 day, radioactivity was present in the 14, 15, 17, and 19 day series of RCS rats in the apical third of the outer segment layer (occupied mainly by extra lamellar material) while there were few silver grains in the middle third of the layer (occupied mainly by distal parts of outer segments). The RCS pigment epithelial cells thus have an unusual synthetic role and appear to be a source of the extra lamellar material. Electron microscope examination revealed that many intact pigment epithelial cell processes were incorporated into the large whorls of extra lamellae. In addition, many disorganized outer segment saccules were observed in continuity with longer membranous lamellae and large lamellar whorls. The extra lamellar material therefore appears to be derived from both rod outer segments and pigment epithelial cells.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 121 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3