A novel fluorescent ceramide analogue for studying membrane traffic in animal cells: accumulation at the Golgi apparatus results in altered spectral properties of the sphingolipid precursor.

Author:

Pagano R E1,Martin O C1,Kang H C1,Haugland R P1

Affiliation:

1. Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland 21210.

Abstract

A series of ceramide analogues bearing the fluorophore boron dipyrromethene difluoride (BODIPY) were synthesized and evaluated as vital stains for the Golgi apparatus, and as tools for studying lipid traffic between the Golgi apparatus and the plasma membrane of living cells. Studies of the spectral properties of several of the BODIPY-labeled ceramides in lipid vesicles demonstrated that the fluorescence emission maxima were strongly dependent upon the molar density of the probes in the membrane. This was especially evident using N-[5-(5,7-dimethyl BODIPY)-1-pentanoyl]-D-erythro-sphingosine (C5-DMB-Cer), which exhibited a shift in its emission maximum from green (integral of 515 nm) to red (integral of 620 nm) wavelengths with increasing concentrations. When C5-DMB-Cer was used to label living cells, this property allowed us to differentiate membranes containing high concentrations of the fluorescent lipid and its metabolites (the corresponding analogues of sphingomyelin and glucosylceramide) from other regions of the cell where smaller amounts of the probe were present. Using this approach, prominent red fluorescent labeling of the Golgi apparatus, Golgi apparatus-associated tubulovesicular processes, and putative Golgi apparatus transport vesicles was seen in living human skin fibroblasts, as well as in other cell types. Based on fluorescence ratio imaging microscopy, we estimate that C5-DMB-Cer and its metabolites were present in Golgi apparatus membranes at concentrations up to 5-10 mol %. In addition, the concentration-dependent spectral properties of C5-DMB-Cer were used to monitor the transport of C5-DMB-lipids to the cell surface at 37 degrees C.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3