Affiliation:
1. The Netherlands Cancer Institute, Division of Cellular Biochemistry, 1066 CX Amsterdam, The Netherlands
Abstract
Gap junctions mediate cell–cell communication in almost all tissues, but little is known about their regulation by physiological stimuli. Using a novel single-electrode technique, together with dye coupling studies, we show that in cells expressing gap junction protein connexin43, cell–cell communication is rapidly disrupted by G protein–coupled receptor agonists, notably lysophosphatidic acid, thrombin, and neuropeptides. In the continuous presence of agonist, junctional communication fully recovers within 1–2 h of receptor stimulation. In contrast, a desensitization-defective G protein–coupled receptor mediates prolonged uncoupling, indicating that recovery of communication is controlled, at least in part, by receptor desensitization. Agonist-induced gap junction closure consistently follows inositol lipid breakdown and membrane depolarization and coincides with Rho-mediated cytoskeletal remodeling. However, we find that gap junction closure is independent of Ca2+, protein kinase C, mitogen-activated protein kinase, or membrane potential, and requires neither Rho nor Ras activation. Gap junction closure is prevented by tyrphostins, by dominant-negative c-Src, and in Src-deficient cells. Thus, G protein–coupled receptors use a Src tyrosine kinase pathway to transiently inhibit connexin43-based cell–cell communication.
Publisher
Rockefeller University Press
Cited by
103 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献