Affiliation:
1. Department of Physiology, Development and Neuroscience, Downing Site, University of Cambridge, Cambridge, UK 1
2. Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany 2
Abstract
Migrating cells must interpret chemical gradients to guide themselves within tissues. A long-held principle is that gradients guide cells via reorientation of leading-edge protrusions. However, recent evidence indicates that protrusions can be dispensable for locomotion in some contexts, raising questions about how cells interpret endogenous gradients in vivo and whether other mechanisms are involved. Using laser wound assays in zebrafish to elicit acute endogenous gradients and quantitative analyses, we demonstrate a two-stage process for leukocyte chemotaxis in vivo: first a “search” phase, with stimulation of actin networks at the leading edge, cell deceleration, and turning. This is followed by a “run” phase, with fast actin flows, cell acceleration, and persistence. When actin dynamics are perturbed, cells fail to resolve the gradient, suggesting that pure spatial sensing of the gradient is insufficient for navigation. Our data suggest that cell contractility and actin flows provide memory for temporal sensing, while expansion of the leading edge serves to enhance gradient sampling.
Publisher
Rockefeller University Press
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献