The motor domain of the kinesin Kip2 promotes microtubule polymerization at microtubule tips

Author:

Chen Xiuzhen1ORCID,Portran Didier2ORCID,Widmer Lukas A.34ORCID,Stangier Marcel M.5ORCID,Czub Mateusz P.5ORCID,Liakopoulos Dimitris26ORCID,Stelling Jörg34ORCID,Steinmetz Michel O.57ORCID,Barral Yves1ORCID

Affiliation:

1. Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich 1 , Zurich, Switzerland

2. CRBM, Université de Montpellier 2 , CNRS, Montpellier, France

3. Eidgenössische Technische Hochschule Zürich 3 Department of Biosystems Science and Engineering, , , Basel, Switzerland

4. and Swiss Institute of Bioinformatics 3 Department of Biosystems Science and Engineering, , , Basel, Switzerland

5. Laboratory of Biomolecular Research, Paul Scherrer Institute 4 Department of Biology and Chemistry, , Villigen, Switzerland

6. 6Laboratory of Biology, University of Ioannina, Faculty of Medicine, Ioannina, Greece

7. University of Basel, Biozentrum 5 , Basel, Switzerland

Abstract

Kinesins are microtubule-dependent motor proteins, some of which moonlight as microtubule polymerases, such as the yeast protein Kip2. Here, we show that the CLIP-170 ortholog Bik1 stabilizes Kip2 at microtubule ends where the motor domain of Kip2 promotes microtubule polymerization. Live-cell imaging and mathematical estimation of Kip2 dynamics reveal that disrupting the Kip2–Bik1 interaction aborts Kip2 dwelling at microtubule ends and abrogates its microtubule polymerization activity. Structural modeling and biochemical experiments identify a patch of positively charged residues that enables the motor domain to bind free tubulin dimers alternatively to the microtubule shaft. Neutralizing this patch abolished the ability of Kip2 to promote microtubule growth both in vivo and in vitro without affecting its ability to walk along microtubules. Our studies suggest that Kip2 utilizes Bik1 as a cofactor to track microtubule tips, where its motor domain then recruits free tubulin and catalyzes microtubule assembly.

Funder

SystemsX.ch

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

European Union’s Horizon 2020

H2020 Marie Skłodowska-Curie Actions

Agence Nationale de la Recherche

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TOR Complex 1: Orchestrating Nutrient Signaling and Cell Cycle Progression;International Journal of Molecular Sciences;2023-10-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3