Tenascin-Y: a protein of novel domain structure is secreted by differentiated fibroblasts of muscle connective tissue.

Author:

Hagios C1,Koch M1,Spring J1,Chiquet M1,Chiquet-Ehrismann R1

Affiliation:

1. Friedrich Miescher Institute, Basel, Switzerland.

Abstract

Tenascin-Y was identified in chicken as a novel member of the tenascin (TN) family of ECM proteins. Like TN-C, TN-R, and TN-X, TN-Y is a multidomain protein consisting of heptad repeats, epidermal growth factor-like repeats, fibronectin type III-like (FNIII) domains and a domain homologous to fibrinogen. In contrast to all other known TNs, the series of FNIII domains is interrupted by a novel domain, rich in serines (S) and prolines (P) that occur as repeated S-P-X-motifs, where X stands for any amino acid. Interestingly, the TN-Y-type FNIII domains are 70-100% identical with respect to their DNA sequence. Different TN-Y variants are created by alternative splicing of FNIII domains. Although, based on sequence comparisons TN-Y is most similar to mammalian TN-X, these molecules are not species homologues. TN-Y is predominantly expressed in embryonic and adult chicken heart and skeletal muscle and, to a lower extent, also in several non-muscular tissues. Two major transcripts of approximately 6.5 and 9.5 kb are differentially expressed during heart and skeletal muscle development and are also present in the adult. Anti-TN-Y antibodies recognize a approximately 400-kD double band and a approximately 300-kD form of TN-Y on immunoblots of chicken heart extracts. In situ hybridization and immunofluorescence analysis of aortic smooth muscle, heart, and skeletal muscle revealed that TN-Y is mainly expressed and secreted by cells within muscle-associated connective tissue. Cultured primary muscle fibroblasts released a approximately 220-kD doublet and a approximately 170-kD single TN-Y variant only when cultured in 10% horse serum but not in medium containing 10% fetal calf serum. All TN-Y variants isolated bind to heparin under physiologically relevant conditions that may indicate an important function retained in all tenascins.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3