Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion.

Author:

Scidmore M A1,Fischer E R1,Hackstadt T1

Affiliation:

1. Host-Parasite Interactions Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana 59840, USA.

Abstract

Chlamydia trachomatis is an obligate intracellular pathogen that multiples within the confines of a membrane-bound vacuole called an inclusion. Approximately 40-50% of the sphingomyelin synthesized from exogenously added NBD-ceramide is specifically transported from the Golgi apparatus to the chlamydial inclusion (Hackstadt, T., M.A. Scidmore, and D.D. Rockey. 1995. Proc. Natl. Acad. Sci. USA. 92: 4877-4881). Given this major disruption of a cellular exocytic pathway and the similarities between glycolipid and glycoprotein exocytosis, we wished to determine whether the processing and trafficking of glycoproteins through the Golgi apparatus to the plasma membrane in chlamydia-infected cells was also disrupted. We analyzed the processing of several model glycoproteins including vesicular stomatitis virus G-protein, transferrin receptor, and human histocompatibility leukocyte class I antigen. In infected cells, the posttranslational processing and trafficking of these specific proteins through the Golgi apparatus and subsequent transport to the plasma membrane was not significantly impaired, nor were these glycoproteins found associated with the chlamydial inclusion membrane. Studies of receptor recycling from endocytic vesicles employing fluorescently and HRP-tagged transferrin and anti-transferrin receptor antibody revealed an increased local concentration of transferrin and transferrin receptor around but never within the chlamydial inclusion. However, Scatchard analysis failed to show either an increased intracellular accumulation of transferrin receptor or a decreased number of plasma membrane receptors in infected cells. Furthermore, the rate of exocytosis from the recycling endosomes to the plasma membrane was not altered in chlamydia-infected cells. Thus, although C. trachomatis disrupts the exocytosis of sphingolipids and the Golgi apparatus appears physically distorted, glycosylation and exocytosis of representative secreted and endocytosed proteins are not disrupted. These results suggest the existence of a previously unrecognized sorting of sphingolipids and glycoproteins in C. trachomatis-infected cells.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 143 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3