Affiliation:
1. Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
Abstract
Zellweger syndrome and related diseases are caused by defective import of peroxisomal matrix proteins. In all previously reported Zellweger syndrome cell lines the defect could be assigned to the matrix protein import pathway since peroxisome membranes were present, and import of integral peroxisomal membrane proteins was normal. However, we report here a Zellweger syndrome patient (PBD061) with an unusual cellular phenotype, an inability to import peroxisomal membrane proteins. We also identified human PEX16, a novel integral peroxisomal membrane protein, and found that PBD061 had inactivating mutations in the PEX16 gene. Previous studies have suggested that peroxisomes arise from preexisting peroxisomes but we find that expression of PEX16 restores the formation of new peroxisomes in PBD061 cells. Peroxisome synthesis and peroxisomal membrane protein import could be detected within 2–3 h of PEX16 injection and was followed by matrix protein import. These results demonstrate that peroxisomes do not necessarily arise from division of preexisting peroxisomes. We propose that peroxisomes may form by either of two pathways: one that involves PEX11-mediated division of preexisting peroxisomes, and another that involves PEX16-mediated formation of peroxisomes in the absence of preexisting peroxisomes.
Publisher
Rockefeller University Press
Cited by
218 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献