THE DEVELOPMENT OF SURFACE SPECIALIZATION IN THE SECRETORY EPITHELIUM OF THE AVIAN SALT GLAND IN RESPONSE TO OSMOTIC STRESS

Author:

Ernst Stephen A.1,Ellis Richard A.1

Affiliation:

1. From the Division of Biological and Medical Sciences, Brown University, Providence, Rhode Island 02912.

Abstract

Cell surface specialization, a characteristic common to most ion-transporting epithelia, was studied in the salt (nasal) gland of the domestic duck in relation to osmotic stress. Three days after hatching, experimental ducklings were given 1% NaCl to drink for 12 hr and freshwater for the remainder of each day. Control ducklings were maintained exclusively on freshwater. The fine structure of the secretory epithelium was examined on various days of the regimen. The nasal gland epithelium of the secretory lobule is composed of several types of cells. Peripheral cells, lying at the blind ends of the branched secretory tubules, are similar in both control and experimental animals at all stages of glandular development. These generative cells contain few mitochondria and have nearly smooth cell surfaces. Partially specialized secretory cells predominate in the secretory tubules of control animals and appear as transitional cells in the tubular epithelium of salt-stressed animals. These cells contain few mitochondria and bear short folds along their lateral cell surfaces. Fully specialized cells dominate the secretory epithelium of osmotically stressed ducklings. The lateral and basal surfaces of these cells are deeply folded, forming complex intra- and extracellular compartments. This vast increase in absorptive surface area is paralleled by an increase in the number of mitochondria that pack the basal compartments. The development of this fully specialized cell is correlated with the marked increase in (Na+-K+)-ATPase activity in the glands of osmotically stressed birds.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 128 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3