Abstract
In the present work, we show that actin is present in considerable quantities in the oocyte nucleus of the newt Pleurodeles waltlii. The nuclear sap, extracted in saline buffer containing Ca++, is fluid. DNAase I inhibition assays have shown that 90% of actin is under a globular state in such conditions. Chelation of Ca++ by EGTA leads to the formation of a nuclear gel composed of individual microfilaments. This nuclear gel contains approximately 50% of total nuclear actin in a filamentous form. Phalloidin, a drug known to stabilize F-actin, induces the formation of a network of actin cables in the nuclei. This network contains nearly 100% of total nuclear actin in the filamentous form. The observation of the cables in the electron microscope shows that they are made of tightly associated microfilaments to which RNP-like particles are bound. The actin antibodies stain the cables and the particles by the indirect immunoperoxidase technique; myosin antibodies mainly stain the particles. The formation of the phalloïdin-induced network seems to require the presence of Ca++, Mg++, and ATP. We propose a scheme for the regulation of the supramolecular forms of actin in oocyte nuclei in which a delicate equilibrium seems to exist between globular actin, microfilaments, and actin cables. This equilibrium would be controlled by the concentration of Ca++, ATP, and various actin-associated proteins.
Publisher
Rockefeller University Press
Cited by
80 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献