Rapid rounding of human epidermoid carcinoma cells A-431 induced by epidermal growth factor

Author:

Chinkers M,McKanna JA,Cohen S

Abstract

Epidermal growth factor (EGF) induces rapid rounding of A-431 human epidermoid carcinoma cells in Ca(++)-free medium. Cell rounding is not induced by a variety of other polypeptide hormones, antiserum to cell membranes, local anesthetics, colchicine, cytochalasin B, or cyclic nucleotides. However, trypsin, like EGF, induces rounding of A- 431 cells in the absence of Ca(++). Both trypsin- and EGF-induced rounding are temperature dependent, appear to be energy dependent, and are inhibited by cytochalasins, suggesting that the active participation of microfilaments in cell rounding. However, a medium transfer experiment suggests that EGF-induced rounding is not attributable to secretion of a protease, and a number of serine protease inhibitors have no effect on the EGF-induced rounding process. Cell rounding is not attributable to the slight stimulation by EGF of the release of Ca(++) that is observed in the Ca(++)-free medium, as stimulation of such release by the ionophore A23187 neither induces cell rounding nor blocks EGF-induced rounding. Cells that have rounded up after treatment with EGF or trypsin spread out upon addition of Ca(++) to the medium, even in the continuing presence of EGF or typsin. Like the cell-rounding process, the cell-spreading process is temperature dependent, appears to be energy dependent, and is inhibited by cytochalasin B. Thus, EGF does not destroy the ability of the cell to spread; rather, in the presence of the EGF (or trypsin), cell spreading and the maintenance of the flattened state become dependent on external Ca(++). Because untreated cells remain flattened in the absence of Ca(++), the data suggest that EGF may disrupt Ca(++)-independent mechanisms of adhesion normally present in A-431 cells.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 127 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3