Quantitative studies on the localization of the cholinergic receptor protein in the normal and denervated electroplaque from Electrophorus electricus.

Author:

Bourgeois J P,Popot J L,Ryter A,Changeux J P

Abstract

Electroplaques dissected from the electric organ of Electrophorus electricus are labeled by tritiated alpha1-isotoxin from Naja nigricollis, a highly selective reagent of the cholinergic (nicotinic) receptor site. Preincubation of the cell with an excess of unlabeled alpha-toxin and with a covalent affinity reagent or labeling in the presence of 10(-4) M decamethonium reduces the binding of [3H]alpha-toxin by at least 75%. Absolute surface densities of alpha-toxin sites are estimated by high-resolution autoradiography on the basis of silver grain distribution and taking into account the complex geopmetry of the cell surface. Binding of [3H]alpha-toxin on the noninnervated face does not differ from background. Labeled sites are observed on the innervated membrane both between the synapses and under the nerve terminals but the density of sites is approx. 100 times higher at the level of the synapses than in between. Analysis of the distance of silver grains from the innervated membrane shows a symmetrical distribution centered on the postsynaptic plasma membrane under the nerve terminal. In extrasynaptic areas, the barycenter of the distribution lies approximately 0.5 micrometer inside the cell, indicating that alpha-toxin sites are present on the membrane of microinvaginations, or caveolae, abundant in the extrajunctional areas. An absolute density of 49,600 +/- 16,000 sites/micrometer2 of postsynaptic membrane is calculated; it is in the range of that found at the crest of the folds at the neuromuscular junction and expected from a close packing of receptor molecules. Electric organs were denervated for periods up to 142 days. Nerve transmission fails after 2 days, and within a week all the nerve terminals disappear and are subsequently replaced by Schwann cell processes, whereas the morphology of the electroplaque remains unaffected. The denervated electroplaque develops some of the electrophysiological changes found with denervated muscles (increases of membrane resting resistance, decrease of electrical excitability) but does not become hypersensitive to cholinergic agonists. Autoradiography of electroplaques dissected from denervated electric organs reveals, after labeling with [3H]alpha-toxin, patches of silver grains with a surface density close to that found in the normal electroplaque. The density of alpha-toxin binding sites in extrasynaptic areas remains close to that observed on innervated cells, confirming that denervation does not cause an increase in the number of cholinergic receptor sites. The patches have the same distribution, shape,and dimensions as in subneural areas of the normal electroplaque, and remnants of nerve terminal or Schwann cells are often found at the level of the patches. They most likely correspond to subsynaptic areas which persist with the same density of [3H]alpha-toxin sites up to 52 days after denervation. In the adult synapse, therefore, the receptor protein exhibits little if any tendency for lateral diffusion.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Allosteric Receptors: From Electric Organ to Cognition;Annual Review of Pharmacology and Toxicology;2010-02-01

2. Polarized distribution of Na+, K+-ATPase α-subunit isoforms in electrocyte membranes;Biochimica et Biophysica Acta (BBA) - Biomembranes;2004-02

3. Jean-Pierre G. Changeux;The History of Neuroscience in Autobiography;2004

4. Lipid Composition of Normal and Denervated Electrocyte Membranes: Quantitative Thin-Layer and Gas-Liquid Chromatography Analysis;Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology;1998-01

5. α-Latrotoxin is a Potent Inducer of Neurotransmitter Release inTorpedoElectric Organ-Functional and Morphological Characterization;European Journal of Neuroscience;1995-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3